Radiator fan controlled timer

Description

The bipolar integrated circuit, U 6049 B, is designed as a radiator fan controlled timer. After the ignition is switched off, the thermal switch of the engine can activate the

Features

- Delay time range: 3.7 s to 20 h
- Cool-off time starts when thermal switch is closed
- RC oscillator determines switching characteristics
- Relay driver with Z-diode
- Debounced input for coolant temperature switch

radiator fan via relay for a preset period, to support the cool-off process.

- Not debounced input for ignition key (Terminal 15)
- Load dump protection
- RF interference protected
- Protection according to ISO/TR 7637-1 (VDE 0839)

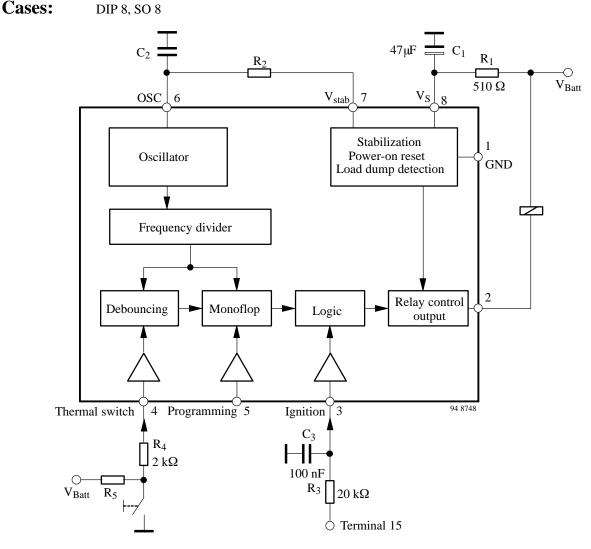
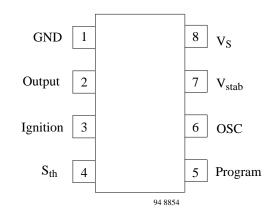



Figure 1 Block diagram with external circuit

TELEFUNKEN Semiconductors

Pin Configuration

Pin	Symbol	Function
1	GND	Reference point, ground
2	Output	Relay control output
3	Ignition	Signal input, ignition
4	Sth	Thermal switch, input
5	Program	Programming input
6	OSC	RC oscillator input
7	V _{stab}	Stabilized voltage
8	Vs	Supply voltage

Functional description

Power supply, Pin 8

For reasons of interference protection and surge immunity, the supply voltage (Pin 8) must be provided with an RC circuit as shown in figure 2a. Dropper resistor, R_1 , limits the current in case of overvoltage, whereas C_1 smoothes the supply voltage at Pin 8.

Recommended values are: $R_1 = 510 \Omega$, $C_1 = 47 \mu F$.

The integrated Z-diode (14 V) protects the supply voltage, V_S , therefore, the operation of the IC is possible between 6 V and 16 V, supplied by V_{Batt} .

However, it is possible to operate the integrated circuit with a 5 V supply, but it should be free of interference voltages. In this case, Pin 7 is connected to Pin 8 as shown in figure 2b, and the R_1C_1 circuit is omitted.

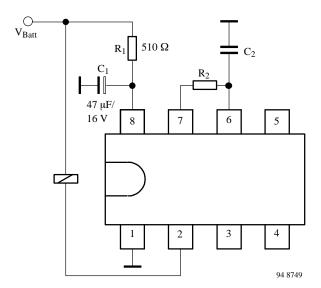


Figure 2a Basic circuit for 12 V voltage supply and oscillator

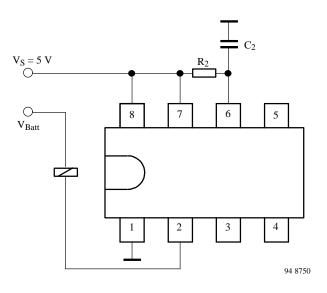


Figure 2b Basic circuit for $V_S = 5 V$

Oscillator frequency, f, is determined mainly by R₂C₂-circuit. Resistance, R₂, determines the charge time, whereas the integrated resistance (2 k Ω) is responsible for discharge time. For the stability of the oscillator frequency, it is recommended to select R₂ much greater than internal resistance (2 k Ω), because the temperature response and the tolerances of the integrated resistance are considerably greater than the external resistance value.

Oscillator frequency, f, is calculated as follows:

$$f = \frac{1}{t_1 + t_2}$$

where

 $\begin{array}{l} t_1 = charge \ time = \alpha_1 \, . \, R_2 \, . \, C_2 \\ t_2 = discharge \ time = \alpha_2 \cdot 2 \ k\Omega \, . \, C_2 \end{array}$

 α_1 and α_2 are constants and has

 $\alpha_1=0.833$ and $\alpha_2=1.551$ when $C_2=470$ pF to 10 nF $\alpha_1=0.746$ and $\alpha_2=1.284$ when $C_2=10$ nF to 4700 nF

Debounce time, t_3 , and the delay time, t_d , depend on the oscillator frequency, f, as follows:

$$t_{3} = 6 \cdot \frac{1}{f}$$
$$t_{d} = 73728 \cdot \frac{1}{f}$$

Table 1 shows relationships between t_3 , t_d , C_2 , R_2 and frequencies from 1 Hz to 20 kHz.

Output, Pin 2

Output Pin 2 is an open collector Darlington circuit with integrated 23-V Z-diode for limitation of the inductive cut–off pulse of the relay coil. The maximum static collector current must not exceed 300 mA and the saturation voltage is typically 1.1 V @ 200 mA.

Interference voltages and load dump

The IC supply is protected by R_1 , C_1 , and an integrated Z-diode, while the inputs are protected by a series resistor, integrated Z-diode and RF-capacitor (refer to Figure 3).

The relay control output is protected via the integrated 23-V Z-diode in the case of short interference peaks. It is switched to conductive condition for a battery voltage of greater than approx. 40 V in the case of load dump. The output transistor is dimensioned so that it can withstand the current produced.

Power-on reset

When the operating voltage is switched on, an internal power-on reset pulse (POR) is generated which sets the logic of the circuits to a defined initial condition. The relay control output is disabled.

Figure 3a Input circuit for ignition (Pin 3)

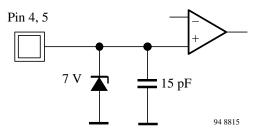
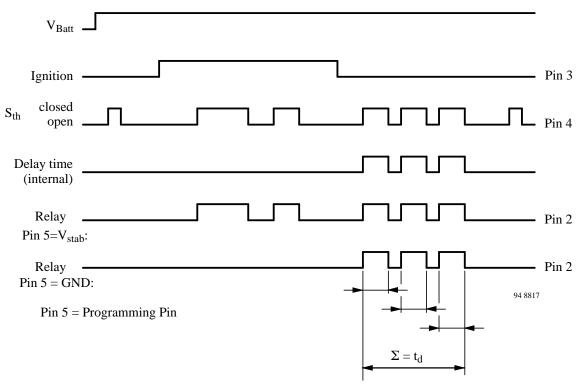


Figure 3b Input circuit Pin 4 and Pin 5

Relay control output behaviour, Pin 2

Integrated circuit control the cooling fan motor in automobile by means of a relay.

Figure 3a shows the internal input circuit of ignition (Pin 3). It has an integrated pull-down resistor (20 k Ω), RF-capacitor (15 pF) and 7-V Z-diode. It reacts to voltages greater than 2 V.


For the programming input, Pin 5, and thermal switch input, Pin 4, there is neither pull-up nor pull-down resistor integrated internally (figure 3b).

One can reduce the standby current through the internal Z-diode by selecting a higher value for resistance R_4 (see figure 5, R_4 up to 200 k Ω). Resistance R_5 determines the contact current through the thermal control switch, S_{th} .

Ignition input (terminal 15) is not debounced. Debouncing can be achieved by external circuit (R_3,C_3) connected to Pin 3 (see figures 1 and 5).

TEMIC

TELEFUNKEN Semiconductors

t_d is stopped, if S_{th} is open

Figure 4 Timing waveform

Programming input (Pin 5) is high-ohmic, therefore it should be connected to Pin 7 (V_{stab}) or GND. Relay control output is shown according to Pin 5 connection.

U 6049 B

Thermal switch input, Pin 4, is debounced (see figure 1). Relay control output, Pin 2, is disabled when the battery voltage, V_{Batt} , is applied. Relay control output follows the conditions of the switch, S_{th} , only when the ignition is switched-ON. This is possible only after the debounce time, t_3 . In this case Pin 5 is connected to Pin 7.

Timing waveforms are shown in figure 4. Total delay time, t_d , is the sum of all ON-pulses caused by the thermostatic switching. This can run down at once or in parts. If S_{th} (Pin 4) is open, the oscillator is stopped (switched-off) internally but when it starts (S_{th} closed), the delay time, t_d , starts running again. In case of renewed switching of ignition, the counter of the delay time is reset.

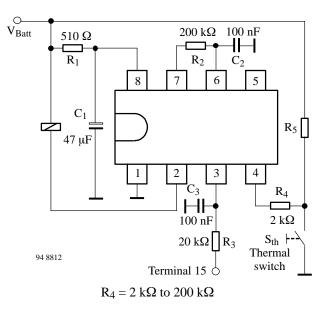


Figure 5 Basic circuit

Absolute Maximum Ratings

Parameters	Symbol	Value	Unit
Operating voltage, static, 5 min	V _{Batt}	24	V
Ambient temperature range	T _{amb}	-40 to +125	°C
Storage temperature range	T _{stg}	-55 to +125	°C
Junction temperature	Tj	150	°C

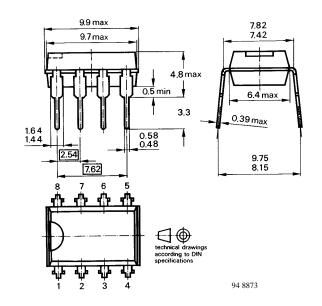
Thermal Resistance

	Parameters	Symbol	Maximum	Unit	
Junction ambient	DIP 8	R _{thJA}	110	K/W	
	SO 8	R _{thJA}	160	K/W	

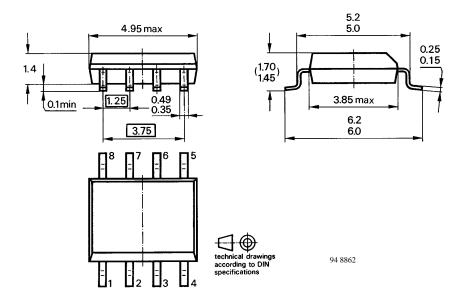
Electrical Characteristics

Test Conditions	Symbol	Min	Тур	Max	Unit				
g voltage $R_1 \ge 510 \Omega$					16				
t < 5 min					24	V			
		V ₈ , V ₇	4.3		6.0	V			
figure 2b Pins									
	Pin 7			5.2		V			
Power on reset			3.0			V			
Pushbuttons open	Pin 8	IS		1.3	2.0	mA			
$I_8 = 10 \text{ mA}$	Pin 8	V_Z	13.5	14	16	V			
	Pin 2								
$I_2 = 200 \text{ mA}$		V2		1.2		V			
$I_2 = 300 \text{ mA}$					1.5				
$V_2 = 14 V$		I _{lkg}		2	100	μΑ			
		I ₂			300	mA			
		I ₂			1.5	А			
$I_2 = 10 \text{ mA}$		V ₂	20	22	24	V			
= 0.001 to 40 kHz, se	e table 1	Pin 6							
		R ₆	1.6	2.0	2.4	kΩ			
Lower		V _{6L}	0.9	1.1	1.4	V			
Upper		V _{6H}	2.8	3.1	3.5				
$V_6 = 0 V$		$-I_6$			1	μΑ			
		t3	5		7	cycles			
		t _d	72704		74752	cycles			
Pi	in 3, 4, 5								
		V _{3,4,5}	1.6	2.0	2.4	V			
$I_{3, 4, 5} = 10 \text{ mA}$			6.5	7.1	8.0	V			
Ignition input Pin 3									
Switched to V _{Batt} (1	15)	R ₃	13	20	50	kΩ			
Pin 4									
$V_4 = 0 V$		$-I_4$			2	μΑ			
Pin 5		· · ·							
$V_5 = 0 V$		- I5			2	μA			
	$R_{1} \geq 510 \Omega$ $t < 5 \text{ min}$ $t < 60 \text{ min}$ Without R ₁ , C ₁ figure 2b Pinss Power on reset Pushbuttons open I ₈ = 10 mA I ₂ = 200 mA I ₂ = 300 mA V ₂ = 14 V I ₂ = 10 mA = 0.001 to 40 kHz, se Lower Upper V ₆ = 0 V I _{3, 4, 5} = 10 mA Switched to V _{Batt} (Pin 4 V ₄ = 0 V Pin 5	t < 5 min t < 60 min Without R ₁ , C ₁ figure 2b Pins 7 and 8 Pin 7 Power on reset Pushbuttons open Pin 8 I ₈ = 10 mA Pin 8 Pin 2 I ₂ = 200 mA I ₂ = 300 mA V ₂ = 14 V I I ₂ = 10 mA = 0.001 to 40 kHz, see table 1 Lower Upper V ₆ = 0 V Pin 3, 4, 5 I ₃ , 4, 5 = 10 mA Pin 3 Switched to V _{Batt} (15) Pin 4 V ₄ = 0 V Pin 5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			

U 6049 B


TELEFUNKEN Semiconductors

Fre- quency f	De- bounce time t ₃	Delay t _o		C ₂	R ₂	Fre- quency f	De- bounce time t ₃	Delay time t _d		C ₂	R ₂
Hz	ms	min	s	nF	kΩ	Hz	ms	min	s	nF	kΩ
1	6000	1229		4700	280	600	10		123	10	200
2	3000	614		1000	650	700	9		105	10	170
3	2000	410		1000	440	800	8		92	10	150
4	1500	307		1000	330	900	7		82	10	130
5	1200	246		1000	260	1000	6		74	10	120
6	1000	205		1000	220	2000	3.00		37	1	600
7	857	176		1000	190	3000	2.00		25	1	400
8	750	154		1000	160	4000	1.50		18	1	300
9	667	137		1000	140	5000	1.20		15	1	240
10	600	123		1000	130	6000	1.00		12	1	200
20	300	61		100	650	7000	.86		11	1	170
30	200	41		100	440	8000	.75		9	1	150
40	150	31		100	330	9000	.67		8	1	130
50	120	25		100	260	10000	.60		7	1	120
60	100	20		100	220	11000	.55		6.7	1	110
70	86	18		100	190	12000	.50		6.1	1	99
80	75	15		100	160	13000	.46		5.7	1	91
90	67	14		100	140	14000	.43		5.3	1	85
100	60	12		100	130	15000	.40		4.9	1	79
200	30		369	10	600	16000	.38		4.6	1	74
300	20		246	10	400	17000	.35		4.3	1	70
400	15		184	10	300	18000	.33		4.1	1	66
500	12		147	10	240	19000	.32		3.9	1	62
						20000	.30		3.7	1	59


 Table 1 Oscillator frequency, debounce time, delay time. dimensioning

Dimensions in mm

Package: DIP 8

Package: SO 8

We reserve the right to make changes to improve technical design without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax Number: 49 (0)7131 67 2423

U 6049 B